วันอาทิตย์ที่ 13 ธันวาคม พ.ศ. 2552

ตัวต้านทาน หรือ รีซิสเตอร์ (อังกฤษ: resistor) เป็นอุปกรณ์ไฟฟ้าชนิดสองขั้ว ที่สร้างความต่างศักย์ทางไฟฟ้าขึ้นคร่อมขั้วทั้งสอง โดยมีสัดส่วนมากน้อยตามกระแสที่ไหลผ่าน อัตราส่วนระหว่างความต่างศักย์ และปริมาณกระแสไฟฟ้า ก็คือ ค่าความต้านทานทางไฟฟ้า หรือค่าความต้านทาน
หน่วยค่าความต้านทานไฟฟ้าตามระบบเอสไอ คือ โอห์ม อุปกรณ์ที่มีความต้านทาน ค่า 1 โอห์ม หากมีความต่างศักย์ 1 โวลต์ไหลผ่าน จะให้กระแสไฟฟ้า 1 แอมแปร์ ซึ่งเท่ากับการไหลของประจุไฟฟ้า 1 คูลอมบ์ (ประมาณ 6.241506 × 1018 elementary charge) ต่อวินาที




ตัวต้านทานแบบแอกเซียล ส่วนใหญ่จะระบุค่าความต้านทานด้วยแถบสี ส่วนแบบประกบผิวหน้านั้นจะระบุค่าด้วยตัวเลข





ตัวต้านทานแบบมี 4 แถบสี










ตัวต้านทานแบบมี 4 แถบสีนั้นเป็นแบบที่นิยมใช้มากที่สุด โดยจะมีแถบสีระบายเป็นเส้น 4 เส้นรอบตัวต้านทาน โดยค่าตัวเลขของ 2 แถบแรกจะเป็น ค่าสองหลักแรกของความต้านทาน แถบที่ 3 เป็นตัวคูณ และ แถบที่ 4 เป็นค่าขอบเขตความเบี่ยงเบน ซึ่งมีค่าเป็น 5%, 10%, หรือ 20%
ค่าของรหัสสีตามมาตรฐาน EIA EIA-RS-279



การอ่านค่าความต้านทานแบบ 5 แถบสี



















วิธีการอ่านดังนี้
แถบที่1 จะเป็นตั้งตั้ง หลักที่1
แถบที่2 จะเป็นตั้งตั้ง หลักที่2
แถบที่3 จะเป็นตั้งตั้ง หลักที่3
แถบที่4 จะเป็นตัวคูณ
แถบที่5 จะเป็นเปอร์เซ็นต์ความผิดพลาด
ตัวอย่างที่ แถบสี แดง ดำ น้ำตาล แดง แดง
แดง ดำ น้ำตาล แดง แดง
2 0 1 x100 + 2 %
อ่านได้ 20100 โอห์ม หรือ 20.1 กิโลโอห์ม ค่าความผิดพลาด + 2 %



การอ่านค่าความต้านทานแบบ 6 แถบสี

จะอ่านแบบค่าความต้านทานแบบ 6 แถบสี(แถบสีที่ 6) จะบอกว่าความต้านทานที่เปลี่ยนตามอุณหภูมิคิดเป็นส่วนในล้านต่อ 1 องศาเซลเซียส

วันอาทิตย์ที่ 29 พฤศจิกายน พ.ศ. 2552




การผลิตพลังงานไฟฟ้าในประเทศไทย

ไฟฟ้าในประเทศไทยเป็นไฟฟ้ากระแสสลับ ความถี่ 50 เฮิร์ตซ์ มีทั้งระบบ 1 เฟส แรงดัน 220 โวลต์ ซึ่งใช้ในบ้านอยู่อาศัย และระบบ 3 เฟส แรงดัน 380 โวลต์ ใช้ในโรงงานอุตสาหกรรม และแรงดันขนาด 11, 22, 33, 69, 115, 230 และ 500 กิโลโวลต์ สำหรับการส่งจ่ายไฟฟ้าภายในประเทศ
ความถี่ 50 เฮิร์ตซ์ คือ ใน 1 วินาที ขั้วแม่เหล็กเหนือและขั้วแม่เหล็กใต้ จะหมุนครบรอบตัดผ่านขดลวดตัวนำบนสเตเตอร์ครบ 50 ครั้ง ในกรณีที่โรเตอร์มีขั้วแม่เหล็ก 2 ขั้ว ความเร็วรอบของโรเตอร์จะหมุน 3,000 รอบต่อนาที แต่ถ้ามีขั้วแม่เหล็ก 4 ขั้ว ความเร็วรอบจะลดลงเหลือ 1,500 รอบต่อนาที โดยมีความถี่คงที่
แหล่งผลิตไฟฟ้า ไฟฟ้าไม่ใช่แหล่งพลังงาน แต่เป็นเพีงพลังงานแปรรูปที่สะอาด และใช้ได้สะดวกรูปหนึ่งเท่านั้น สามารถเปลี่ยนเป็นพลังงานอื่นๆได้ง่าย เช่น แสงสว่าง เสียง ความร้อน พลังงานกล เป็นต้น ทั้งยังสามารถส่งไปยังระยะทางไกลได้อย่างรวดเร็ว กล่าวคือ ไฟฟ้ามีความเร็วใกล้เคียงกับแสง ในระยะทาง 100 กิโลเมตร ใช้เวลาเพียง 1 ใน 3,000 วินาที ดังนั้นจึงส่งไปถึงผู้ใช้งานได้ตลอดเวลา
สำหรับแหล่งพลังงานไฟฟ้าที่แท้จริง ก็คือ พลังที่นำมาใช้ทำให้เครื่องกำเนิดไฟฟ้าหมุนตลอดเวลาหากเครื่องกำเนิดไฟฟ้าหยุดหมุน การผลิตไฟฟ้าจะหยุดไปด้วย
การผลิตไฟฟ้าของประเทศไทยที่ใช้อยู่ในปัจจุบัน สามารถแบ่งออกเป็น 2 ประเภทคือ
1. ประเภทไม่ใช้เชื้อเพลิง
โรงไฟฟ้าพลังน้ำจากน้ำในอ่างเก็บน้ำ หรือจากลำห้วยที่อยู่ในระดับสูงๆ
โรงไฟฟ้าพลังงานธรรมชาติจากต้นพลังงานที่ไม่หมดสิ้น เช่น พลังงานแสงอาทิตย์ ลม ความร้อนใต้พิภพ
2. ประเภทใช้เชื้อเพลิง
โรงไฟฟ้าพลังไอน้ำ ใช้ก๊าซธรรมชาติ ถ่านลิกไนต์ หรือน้ำมันเตา เป็นเชื้อเพลิงให้ความร้อนแก่น้ำจนเดือดเป็นไอน้ำ นำแรงดันจากไอน้ำมาใช้ในการผลิตไฟฟ้า
โรงไฟฟ้าพลังความร้อน ใช้ก๊าซธรรมชาติหรือน้ำมันดีเซลมาสันดาป ทำให้เกิดพลังงานกลต่อไป โรงไฟฟ้าประเภทนี้ได้แก่- โรงไฟฟ้ากังหันแก๊ส ใช้ก๊าสธรรมชาติหรือน้ำมันดีเซ - โรงไฟฟ้าพลังความร้อนร่วม ใช้ก๊าซธรรมชาติหรือน้ำมันดีเซล - โรงไฟฟ้าดีเซล ใช้น้ำมันดีเซล
การทำงานของโรงไฟฟ้าประเภทต่างๆ


โรงไฟฟ้าพลังน้ำ (Hydro Power Plant)





โรงไฟฟ้าพลังน้ำ เป็นการนำทรัพยากรน้ำมาใช้ให้เกิดประโยชน์ในการผลิตไฟฟ้าโดยอาศัยความเร็วและแรงดันสูงมาหมุนกังหันน้ำ มีขั้นตอนดังนี้
น้ำในอ่างเก็บน้ำอยู่ในระดับสูงกว่าโรงไฟฟ้าทำให้มีแรงดันน้ำสูง
ปล่อยน้ำในปริมาณที่ต้องการเข้ามาตามท่อส่งน้ำ เพื่อส่งไปยังอาคารโรงไฟฟ้าที่อยู่ต่ำกว่า
น้ำในอ่างเก็บน้ำอยู่ในระดับสูงกว่าโรงไฟฟ้าทำให้มีแรงดันน้ำสูง
เพลาของเครื่องกังหันน้ำต่อกับเพลาของเครื่องกำเนิดไฟฟ้าทำให้โรเตอร์หมุน เกิดการเหนี่ยวนำขึ้นในเครื่องกำเนิดไฟฟ้า ได้พลังงานไฟฟ้าออกมาใช้งาน

















โรงไฟฟ้าพลังไอน้ำ (Steam Power Plant)










เป็นการแปรสภาพพลังงานเชื้อเพลิงไปเป็นพลังงานไฟฟ้าโดยใช้ไอน้ำเป็นตัวกลาง ปัจจุบัน ประเทศไทยใช้น้ำมันเตา ถ่านลิกไนต์ และก๊าซธรรมชาติ เป็นเชื้อเพลิง ซึ่งมีลำดับการทำงานดังนี้
เผาไหม้เชื้อเพลิง ทำให้เกิดการเผาไหม้ทางเคมีได้พลังงานความร้อน
นำความร้อนที่ได้ไปต้มน้ำ เพื่อให้กลายเป็นไอน้ำที่อุณหภูมิและความดันที่ต้องการ
ส่งไอน้ำเข้าไปหมุนเครื่องกังหันไอน้ำ ซึ่งมีเพลาต่ออยู่กับเครื่องกำเนิดไฟฟ้า ทำให้โรเตอร์หมุนเกิดการเหนี่ยวนำขึ้นในเครื่องกำเนิดไฟฟ้า ได้พลังงานไฟฟ้าออกมาใช้งาน
สำหรับในต่างประเทศ นอกจากเชื้อเพลิงที่ประเทศไทยใช้อยู่ ยังมีการใช้เชื้อเพลิงนิวเคลียร์ ถ่านหินคุณภาพดี เช่น แอนทราไซต์ และบิทูมินัส เป็นต้น

วันจันทร์ที่ 7 กันยายน พ.ศ. 2552

คุณสมบัติของแสง



คุณสมบัติของแสง










แสง คือการแผ่รังสีแม่เหล็กไฟฟ้าในช่วงความยาวคลื่นที่สายตามนุษย์มองเห็น หรือบางครั้งอาจรวมถึงการแผ่รังสีแม่เหล็กไฟฟ้าในช่วงความยาวคลื่นตั้งแต่รังสีอินฟราเรดถึงรังสีอัลตราไวโอเลตด้วย สมบัติพื้นฐานของแสง (และของการแผ่รังสีแม่เหล็กไฟฟ้าทุกช่วงคลื่น) ได้แก่







1. ความเข้ม (ความสว่างหรือแอมพลิจูด ซึ่งปรากฏแก่สายตามนุษย์ในรูปความสว่างของแสง)
2. ความถี่ (หรือความยาวคลื่น ซึ่งปรากฏแก่สายตามนุษย์ในรูปสีของแสง) และ



3.โพลาไรเซชัน (มุมการสั่นของคลื่น ซึ่งโดยปกติมนุษย์ไม่สามารถรับรู้ได้)
แสงจะแสดงคุณสมบัติทั้งของ
คลื่นและของอนุภาคในเวลาเดียวกัน ทั้งนี้เนื่องจากทวิภาวะของคลื่นและอนุภาค ธรรมชาติที่แท้จริงของแสงเป็นปัญหาหลักปัญหาหนึ่งของฟิสิกส์สมัยใหม่










แสงมีคุณสมบัติทวิภาวะ กล่าวคือ



แสงเป็นคลื่น : แสงเป็นคลื่นแม่เหล็กไฟฟ้า โดยที่ระนาบการสั่นของสนามแม่เหล็กตั้งฉากกับระนาบการสั่นของสนามไฟฟ้า และตั้งฉากกับทิศทางการเคลื่อนที่ของคลื่น และแสงก็มีการเลี้ยวเบนด้วย ซึ่งการเลี้ยวเบนก็แสดงคุณสมบัติของคลื่น
แสงเป็นอนุภาค : แสงเป็นก้อน
พลังงานมีค่าพลังงาน E = hf โดยที่ h คือค่าคงตัวของพลังค์ และ f คือความถี่ของแสง เรียกอนุภาคแสงว่าโฟตอน












รังสีแม่เหล็กไฟฟ้าที่มองเห็นได้



แสงคือ รังสีแม่เหล็กไฟฟ้าที่อยู่ในช่วง สเปกตรัมของคลื่นแม่เหล็กไฟฟ้า ที่สามารถมองเห็นได้ คือ อยู่ในย่านความถี่ 380 THz (3.8×1014 เฮิรตซ์) ถึง 750 THz (7.5×1014 เฮิรตซ์) จากความสัมพันธ์ระหว่าง ความเร็ว (v) ความถี่ (f หรือ ν) และ ความยาวคลื่น (λ) ของแสง:

และ ความเร็วของแสงในสุญญากาศมีค่าคงที่ ดังนั้นเราจึงสามารถแยกแยะแสงโดยใช้ตามความยาวคลื่นได้ โดยแสงที่เรามองเห็นได้ข้างต้นนั้นจะมีความยาวคลื่นอยู่ในช่วง 400 นาโนเมตร (ย่อ 'nm') และ 800 nm (ในสุญญากาศ)
การมองเห็นของมนุษย์นั้นเกิดจากการที่แสง ไปกระตุ้น เซลล์รูปแท่งในจอตา(rod cell) และ เซลล์รูปกรวยในจอตา (cone cell) ที่จอตา (retina) ให้ทำการสร้างคลื่นไฟฟ้าบนเส้นประสาท และส่งผ่านเส้นประสาทตาไปยังสมอง ทำให้เกิดการรับรู้มองเห็น








ความเร็วของแสง







นักฟิสิกส์หลายคนได้พยายามทำการวัดความเร็วของแสง การวัดแรกสุดที่มีความแม่นยำนั้นเป็นการวัดของ นักฟิสิกส์ชาวเดนมาร์ก Ole Rømer ในปี ค.ศ. 1676 เขาได้ทำการคำนวณจากการสังเกตการเคลื่อนที่ของดาวพฤหัสบดี และ ดวงจันทร์ไอโอ ของดาวพฤหัสบดี โดยใช้กล้องดูดาว เขาได้สังเกตความแตกต่างของช่วงการมองเห็นรอบของการโคจรของดวงจันทร์ไอโอ และได้คำนวณค่าความเร็วแสง 227,000 กิโลเมตร ต่อ วินาที (ประมาณ 141,050 ไมล์ ต่อ วินาที)
การวัดความเร็วของแสงบนโลกนั้นกระทำสำเร็จเป็นครั้งแรกโดย Hippolyte Fizeau ในปี ค.ศ. 1849 เขาทำการทดลองโดยส่องลำของแสงไปยังกระจกเงาซึ่งอยู่ห่างออกไปหลายพันเมตรผ่านซี่ล้อ ในขณะที่ล้อนั้นหมุนด้วยความเร็วคงที่ ลำแสงพุ่งผ่านช่องระหว่างซี่ล้อออกไปกระทบกระจกเงา และพุ่งกลับมาผ่านซี่ล้ออีกซี่หนึ่ง จากระยะทางไปยังกระจกเงา จำนวนช่องของซี่ล้อ และความเร็วรอบของการหมุน เขาสามารถทำการคำนวณความเร็วของแสงได้ 313,000 กิโลเมตร ต่อ วินาที
Albert A. Michelson ได้ทำการพัฒนาการทดลองในปี ค.ศ. 1926 โดยใช้กระจกเงาหมุน ในการวัดช่วงเวลาที่แสงใช้ในการเดินทางไปกลับจาก ยอด Mt. Wilson ถึง Mt. San Antonio ในมลรัฐแคลิฟอร์เนีย ซึ่งการวัดนั้นได้ 186,285 ไมล์/วินาที (299,796 กิโลเมตร/วินาที) ค่าความเร็วแสงประมาณหรือค่าปัดเศษที่เราใช้กันในทุกวันนี้คือ 300,000 km/s and 186,000 miles/s.








การหักเหของแสง



แสงนั้นวิ่งผ่านตัวกลางด้วยความเร็วจำกัด ความเร็วของแสงในสุญญากาศ c จะมีค่า c = 299,792,458 เมตร ต่อ วินาที (186,282.397 ไมล์ ต่อ วินาที) โดยไม่ขึ้นกับว่าผู้สังเกตการณ์นั้นเคลื่อนที่หรือไม่ เมื่อแสงวิ่งผ่านตัวกลางโปร่งใสเช่น อากาศ น้ำ หรือ แก้ ความเร็วแสงในตัวกลางจะลดลงซึ่งเป็นเหตุให้เกิดปรากฏการณ์การหักเหของแสง คุณลักษณะของการลดลงของความเร็วแสงในตัวกลางที่มีความหนาแน่นสูงนี้จะวัดด้วย ดรรชนีหักเหของแสง (refractive index) n โดยที่

โดย n=1 ในสุญญากาศ และ n>1 ในตัวกลาง
เมื่อลำแสงวิ่งผ่านเข้าสู่ตัวกลางจากสุญญากาศ หรือวิ่งผ่านจากตัวกลางหนึ่งไปยังอีกตัวกลางหนึ่ง แสงจะไม่มีการเปลี่ยนแปลงความถี่ แต่เปลี่ยนความยาวคลื่นเนื่องจากความเร็วที่เปลี่ยนไป ในกรณีที่มุมตกกระทบของแสงนั้นไม่ตั้งฉากกับผิวของตัวกลางใหม่ที่แสงวิ่งเข้าหา ทิศทางของแสงจะถูกหักเห ตัวอย่างของปรากฏการณ์หักเหนี้เช่น เลนส์ต่างๆ ทั้งกระจกขยาย คอนแทคเลนส์ แว่นสายตา กล้องจุลทรรศน์ กล้องส่องทางไกล










สีและความยาวคลื่น



ความยาวคลื่นที่แตกต่างกันนั้น จะถูกตรวจจับได้ด้วยดวงตาของมนุษย์ ซึ่งจะแปลผลด้วยสมองของมนุษย์ให้เป็นสีต่างๆ ในช่วง สีแดงซึ่งมีความยาวคลื่นยาวสุด (ความถี่ต่ำสุด) ที่มนุษย์มองเห็นได้ ถึงสีม่วง ซึ่งมีความยาวคลื่นสั้นสุด (ความถี่สูงสุด) ที่มนุษย์มองเห็นได้ ความถี่ที่อยู่ในช่วงนี้ จะมีสีส้ม, สีเหลือง, สีเขียว, สีน้ำเงิน และ สีคราม













หน่วยวัดแสง

หน่วยที่ใช้ในการวัดแสง
ความจ้า (brightness) หรือ อุณหภูมิของแสง (temperature)
ความสว่าง (illuminance หรือ illumination) (หน่วยSI: ลักซ์ (lux))
ฟลักซ์ส่องสว่าง (luminous flux) (หน่วย SI: ลูเมน (lumen))
ความเข้มของการส่องสว่าง (luminous intensity) (หน่วย SI: แคนเดลา (candela))
นอกจากนี้ยังมี:
ความสุกใสของแสง (brilliance) หรือ แอมปลิจูด (amplitude)
สี (color) หรือ ความถี่ (frequency)
โพลาไรเซชั่น (polarization) หรือ มุมการแกว่งของคลื่น (angle of vibration)

































วันจันทร์ที่ 31 สิงหาคม พ.ศ. 2552



กล้องจุลทรรศน์



กล้องจุลทรรศน์ (อังกฤษ: Microscope) เป็นอุปกรณ์สำหรับมองดูวัตถุที่มีขนาดเล็กเกินกว่ามองเห็นด้วยตาเปล่า ศาสตร์ที่มุ่งสำรวจวัตถุขนาดเล็กโดยใช้เครื่องมือดังกล่าวนี้ เรียกว่า จุลทรรศนศาสตร์


กล้องจุลทรรศน์เป็นคำศัพท์ที่แปลจากภาษาอังกฤษ "microscope" ซึ่งมีรากศัพท์มาจากภาษากรีก "ไมครอน" (micron) หมายถึง ขนาดเล็ก และ "สโคปอส" (scopos) หมายถึง เป้าหมาย หรือมุมมอง




ประวัติ





สิ่งมีชีวิตขนาดเล็กที่ไม่สามารถมองเห็นด้วยตาเปล่า เดิมใช้เพียงแว่นขยายและเลนส์อันเดียวส่องดู คงเช่นเดียวกับการใช้แว่นขยายส่องดูลายมือ ในระยะต่อมา กาลิเลอิ กาลิเลโอ ได้สร้างแว่นขยายส่องดูสิ่งมีชีวิตเล็กๆในราวปี พ.ศ. 2153
ในช่วงปี พ.ศ. 2133 ช่างทำแว่นตาชาวฮอลันดาชื่อ แจนเสนประดิษฐ์กล้องจุลทรรศน์ชนิดเลนส์ประกอบ ประกอบด้วยแว่นขยายสองอัน
ในปี พ.ศ. 2208 โรเบิร์ต ฮุก ได้ประดิษฐ์กล้องจุลทรรศน์ชนิดเลนส์ประกอบที่มีลำกล้องรูปร่างสวยงาม ป้องกันการรบกวนจากแสงภายนอกได้ และไม่ต้องถือเลนส์ให้ซ้อนกัน (ดูภาพในกล่องข้อความประกอบ) เขาส่องดูไม้คอร์กฝานบางๆ แล้วพบช่องเล็กๆมากมาย เขาเรียกช่องเหล่านั้นว่าเซลล์ ซึ่งหมายถึงห้องว่างๆ หรือห้องขัง เซลล์ที่ฮุกเห็นเป็นเซลล์ที่ตายแล้ว เหลือแต่ผนังเซลล์ของพืชซึ่งแข็งแรงกว่าเยื่อหุ้มเซลล์ในสัตว์ จึงทำให้คงรูปร่างอยู่ได้ ฮุกจึงได้ชื่อว่าเป็นผู้ตั้งชื่อเซลล์
ในปี พ.ศ. 2215 แอนโทนี แวน ลิวเวนฮุค ชาวฮอลันดา สร้างกล้องจุลทรรศน์ชนิดเลนส์เดียวจากแว่นขยายที่เขาฝนเอง แว่นขยายบางอันขยายได้ถึง 270 เท่า เขาใช้กล้องจุลทรรศน์ตรวจดูหยดน้ำจากบึงและแม่น้ำ และจากน้ำฝนที่รองไว้ในหม้อ เห็นสิ่งมีชีวิตเล็กๆมากมายนอกจากนั้นเขายังส่องดูสิ่งมีชีวิตต่างๆ เช่น [(([เม็ดเลือดแดง]))], เซลล์สืบพันธุ์สัตว์ตัวผู้, กล้ามเนื้อ เป็นต้น เมื่อเขาพบสิ่งเหล่านี้ เขารายงานไปยังราชสมาคมแห่งกรุงลอนดอน จึงได้รับการยกย่องว่าเป็นผู้ประดิษฐ์กล้องจุลทรรศน์
ปี พ.ศ. 2367 ดูโธรเชต์ นักพฤกษศาสตร์ชาวฝรั่งเศสศึกษาเนื้อเยื่อพืช และสัตว์พบว่าประกอบด้วยเซลล์
ปี พ.ศ. 2376 โรเบิร์ต บราวน์ นักพฤกษศาสตร์ชาวอังกฤษ เป็นค้นแรกที่พบว่าเซลล์มีพืชมีนิวเคลียสเป็นก้อนกลมๆ อยู่ภายในเซลล์
ปี พ.ศ. 2378 เฟ-ลิกซ์ ดือจาร์แดง นักสัตวศาสตร์ชาวฝรั่งเศส ศึกษาจุลินทรีย์และสิ่งมีชีวิตอื่นๆ พบว่าภายในประกอบด้วยของเหลวใสๆ จึงเรียกว่า ซาร์โคด ซึ่งเป็นภาษาฝรั่งเศสมาจากศัพท์กรีกว่า ซารค์ (((Sarx))) ซึ่งแปลว่าเนื้อ
ปี พ.ศ. 2381 ชไลเดน นักพฤกษศาสตร์ชาวเยอรมัน ศึกษาเนื้อเยื่อพืชชนิดต่างๆ พบว่าพืชทุกชนิดประกอบด้วยเซลล์
ปี พ.ศ. 2382 ชไลเดรและชวาน จึงร่วมกันตั้งทฤษฎีเซลล์ ซึ่งมีใจความสรุปได้ว่า "สิ่งมีชีวิตทุกชนิดประกอบไปด้วยเซลล์และผลิตภัณฑ์จากเซลล์"
พ.ศ. 2382 พัวกินเย นักสัตวิทยาชาวเชคโกสโลวาเกีย ศึกษาไข่และตัวอ่อนของสัตว์ชนิดต่างๆ ะบว่าภายในมีของเหลวใส เหนียว อ่อนนุ่มเป็นวุ้น เรียกว่าโปรโตพลาสซึม
ต่อจากนั้นมีนักวิทยาศาสตร์อีกมากมายทำการศึกษาเกี่ยวกับเซลล์ด้วยกล้องจุลทรรศน์ชนิดเลนส์ประกอบ และได้พัฒนาให้ดียิ่งขึ้น จนกระทั่งปี พ.ศ. 2475 นักวิทยาศาสตร์ชาวเยอรมัน คืออี.รุสกา และแมกซ์นอลล์ ได้เปลี่ยนแปลงกระบวนการของกล้องจุลทรรศน์ที่ใช้แสงและเลนส์มาใช้ลำอิเล็กตรอน ทำให้เกิดกล้องจุลทรรศน์อิเล็กตรอนขึ้นในระยะต่อๆมา ปัจจุบันมีกำลังขยายกว่า 5 แสนเท่า




ชนิดของกล้องจุลทรรศน์


กล้องจุลทรรศน์สามารถแบ่งออกเป็นประเภทใหญ่ๆได้ 2 ประเภท คือ กล้องจุลทรรศน์แบบแสง (Optical microscopes) และกล้องจุลทรรศน์อิเล็กตรอน(Electron microscopes)
กล้องจุลทรรศน์ชนิดที่พบได้มากที่สุด คือชนิดที่ประดิษฐ์ขึ้นเป็นครั้งแรก เรียกว่า กล้องจุลทรรศน์แบบใช้แสง (optical microscope) เป็นอุปกรณ์ใช้แสงอย่างหนึ่ง มีเลนส์อย่างน้อย 1 ชิ้น เพื่อทำการขยายภาพวัตถุที่วางในระนาบโฟกัสของเลนส์นั้นๆ

กล้องจุลทรรศน์แบบใช้แสง



1. Light microscope เป็นกล้องจุลทรรศน์ที่พบอยู่ทั่วไป โดยเวลาส่องดูจะเห็นพื้นหลังเป็นสีขาว และจะเห็นเชื้อจุลินทรีย์มีสีเข้มกว่า



2. Dark field microscoe เป็นกล้องจุลทรรศน์ที่มีพื้นหลังเป็นสีดำ เห็นเชื้อจุลินทรีย์สว่าง เหมาะสำหรับใช้ส่องจุลินทรีย์ที่มีขนาดเล็ก ที่ติดสียาก



3. Phase contrast microscope ใช้สำหรับส่องเชื้อจุลินทรีย์ที่ยังไม่ได้ทำการย้อมสี จะเห็นชัดเจนกว่า Light microscope



4. Fluorescence microscope ใช้แหล่งกำเนิดแสงเป็น อัลตราไวโอเลต ส่องดูจุลินทรีย์ที่ย้อมด้วยสารเรืองแสง ซึ่งเมื่อกระทบกับแสง UV จะเปลี่ยนเป็นแสงช่วงที่มองเห็นได้ แล้วแต่ชนิดของสารที่ใช้ พื้นหลังมักมีสีดำ




กล้องจุลทรรศน์อิเล็กตรอน



กล้องจุลทรรศน์อิเล็กตรอน (Electron microscope) เป็นกล้องจุลทรรศน์ที่มีกำลังการขยายสูงมาก เพราะใช้ลำแสงอิเล็กตรอนแทนแสงปกติและใช้สนามแม่เหล็กไฟฟ้าแทนเลนส์แก้ว เป็นกล้องที่ใช้ในการศึกษาโครงสร้าง และส่วนประกอบของเซลล์ ได้อย่างละเอียด ที่กล้องชนิดอื่นไม่สามารถทำได้














ส่วนประกอบของกล้องจุลทรรศน์



1. ฐาน (Base) เป็นส่วนที่ใช้วางบนโต๊ะ ทำหน้าที่รับน้ำหนักทั้งหมดของกล้องจุลทรรศน์ มีรูปร่างสี่เหลี่ยม หรือวงกลม ที่ฐานจะมีปุ่มสำหรับปิดเปิดไฟฟ้า



2.แขน (Arm) เป็นส่วนเชื่อมตัวลำกล้องกับฐาน ใช้เป็นที่จับเวลาเคลื่อนย้ายกล้องจุลทรรศน์

3. ลำกล้อง (Body tube) เป็นส่วนที่ปลายด้านบนมีเลนส์ตา ส่วนปลายด้านล่างติดกับเลนส์วัตถุ ซึ่งติดกับแผ่นหมุนได้ เพื่อเปลี่ยนเลนส์ขนาดต่าง ๆ ติดอยู่กับจานหมุนที่เรียกว่า Revolving Nosepiece


4.ปุ่มปรับภาพหยาบ (Coarse adjustment) ทำหน้าที่ปรับภาพโดยเปลี่ยนระยะโฟกัสของเลนส์ใกล้วัตถุ (เลื่อนลำกล้องหรือแท่นวางวัตถุขึ้นลง) เพื่อทำให้เห็นภาพชัดเจน

5. ปุ่มปรับภาพละเอียด (Fine adjustment) ทำหน้าที่ปรับภาพ ทำให้ได้ภาพที่ชัดเจนมากขึ้น
เลนส์ใกล้วัตถุ (Objective lens) เป็นเลนส์ที่อยู่ใกล้กับแผ่นสไลด์ หรือวัตถุ ปกติติดกับแป้นวงกลมซึ่งมีประมาณ 3-4 อัน แต่ละอันมีกำลังบอกเอาไว้ เช่น x3.2, x4, x10, x40 และ x100 เป็นต้น ภาพที่เกิดจากเลนส์ใกล้วัตถุเป็นภาพจริงหัวกลับ



6. เลนส์ใกล้ตา (Eye piece) เป็นเลนส์ที่อยู่บนสุดของลำกล้อง โดยทั่งไปมีกำลังขยาย 10x หรือ 15x ทำหน้าที่ขยายภาพที่ได้จากเลนส์ใกล้วัตถุให้มีขนาดใหญ่ขึ้น ทำให้เกิดภาพที่ตาผู้ศึกษาสามารถมองเห็นได้ โดยภาพที่ได้เป็นภาพเสมือนหัวกลับ



7. เลนส์รวมแสง (Condenser) ทำหน้าที่รวมแสงให้เข้มขึ้นเพื่อส่งไปยังวัตถุที่ต้องการศึกษา
กระจกเงา (Mirror) ทำหน้าที่สะท้อนแสงจากธรรมชาติหรือแสงจากหลอดไฟภายในห้องให้ส่องผ่านวัตถุโดยทั่วไปกระจกเงามี 2 ด้าน ด้านหนึ่งเป็นกระจกเงาเว้า อีกด้านเป็นกระจกเงาระนาบ สำหรับกล้องรุ่นใหม่จะใช้หลอดไฟเป็นแหล่งกำเนิดแสง ซึ่งสะดวกและชัดเจนกว่า



8. ไดอะแฟรม (Diaphragm) อยู่ใต้เลนส์รวมแสงทำหน้าที่ปรับปริมาณแสงให้เข้าสู่เลนส์ในปริมาณที่ต้องการ

9. แท่นวางวัตถุ (Speciment stage) เป็นแท่นใช้วางแผ่นสไลด์ที่ต้องการศึกษา



10. ที่หนีบสไลด์ (Stage clip) ใช้หนีบสไลด์ให้ติดอยู่กับแท่นวางวัตถุ ในกล้องรุ่นใหม่จะมี Mechanical stage แทนเพื่อควบคุมการเลื่อนสไลด์ให้สะดวกยิ่งขึ้น



11. แท่นวางวัตถุ (Stage) เป็นแท่นสำหรับวางสไลด์ตัวอย่างที่ต้องการศึกษา มีลักษณะเป็นแท่นสี่เหลี่ยม หรือวงกลมตรงกลางมีรูให้แสงจากหลอดไฟส่องผ่านวัตถุแท่นนี้สามารถเลื่อนขึ้นลงได้ด้านในของแท่นวางวัตถุจะมีคริปสำหรับยึดสไลด์และมีอุปกรณ์ช่วยในการเลื่อนสไลด์ เรียกว่า Mechanical Stage นอกจากนี้ยังมีสเกลบอกตำแหน่งของสไลด์บนแทนวางวัตถุ ทำให้สามารถบอกตำแหน่งของภาพบนสไลด์ได้